VULGARONE, A SESQUITERPENE KETONE WITH A NEW CARBON SKELETON FROM CHRISANTHEMUM VULGARE

Y. Uchio, A. Matsuo, M. Nakayama and S. Hayashi Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730, Japan

(Received in Japan 16 June 1976; received in UK for publication 5 July 1976)

The essential oil of Chrysanthemum vulgare (L.) Bernhardi native in Europe has been investigated by many workers.¹⁾ From the plant, we have now isolated a novel sesquiterpene ketone named vulgarone, whose structure was determined to be formula I on the basis of spectroscopic comparison with chrysanthenone and preparation of the epoxide and LAH-reduction product. The present communication deals with the evidence for the proposed structure.

Vulgarone, $[\alpha]_{\rm D}$ +113.7°(c 0.95, CHCl₃), was isolated in a homogeneous state, as examined by GLC and TLC, by eluting the steam volatile oil over a silica gel column with a mixed solvent of hexane and ethyl acetate together with (-)-chrysanthenone, $[\alpha]_{\rm D}$ -55.2°(c 1.50, CHCl₃). The high resolution mass spectrum showed the molecular formula of the ketone to be $C_{15}H_{22}O(M^+$ obs. 218.1653, calc. 218. 1669), and the ¹³C-NMR, ¹H-NMR and IR spectra exhibited the presence of the following groups: a cyclobutanone($v_{\rm max}^{\rm CC1}$ 4 1780 cm⁻¹, $\delta_{\rm C}$ 205.7 ppm),² three tertiary methyls(gem-dimethyl, $\delta_{\rm C}$ 26.1q, 30.4q, $\delta_{\rm H}$ 0.93s, 1.01s; the other $\delta_{\rm C}$ 27.7q, $\delta_{\rm H}$ 1.18s), a trisubstituted double bond bearing a methyl group($\delta_{\rm C}$ 139.7s, 121.4d; $\delta_{\rm H}$ 5.56m; $\delta_{\rm C}$ 23.5q, $\delta_{\rm H}$ 1.78t, J=2.0 Hz), three methylene($\delta_{\rm C}$ 42.2t, 33.2t, 21.5t, $\delta_{\rm H}$ 1.25-1.65m) and three methines($\delta_{\rm C}$ 68.6d, 65.1d, $\delta_{\rm H}$ 2.62dd, J=7.0, 1.0, $\delta_{\rm H}$ 2.78ddd, J=7.0, 2.5, 1.5, AB type coupling; $\delta_{\rm C}$ 55.6d, $\delta_{\rm H}$ 2.38m). Although the ketone contained one more isoprene unit than chrysanthenone(IV), almost all of the functional groups were the same with those of the latter. Besides, the UV spectrum of the ketone showed an absorption band attributable to an $\beta_{\rm A}\gamma$ -unsaturated carbonyl system³ at 292 nm(ε =88, EtOH) as well as that of chrysanthenone (295 nm, ε =144, EtOH),

Accordingly, the ketone was thought to have structural formula I, which reasonably explained the ¹³C-NMR and ¹H-NMR spectra in comparison with those of chrysanthenone and its parent compound, α -pinene, as shown in Table I and II.

Irradiation of the vinylic proton at 5.58 reformed the triplet(1.78, of olefinic methyl), the double doublet(2.62) and double quartet(ddd, 2.78) of both α -methine protons in the cyclobutane residue, and a broad singlet(2.38, Why 7.0 Hz) of allylic proton into a doublet(J=2.0), doublet(J=7.0), double doublet(J= 7.0, 2.5) and slightly narrow singlet(Why 5.5 Hz) respectively; irradiation of

the allylic proton at 2.38 caused the triplet(1.78) of the olefinic methyl to collapse to doublet(J=2.0). In addition, double irradiation of the olefinic methyl(1.78) and of the middle between the double doublet(2.62) and double quartet(ddd, 2.78) caused the multiplet(5.58) of the vinylic proton to become a doublet(J=2.5); double irradiation of the olefinic methyl(1.78) and allylic proton (2.38) reformed the multiplet(5.58) into a singlet(Why 2.0) and that of the vinylic proton and the allylic proton reformed the triplet(1.78) into a singlet. The results of these decoupling experiments revealed that the molecule of the compound had cross-ring⁴⁾ (J_{1,5}=7.0), allylic(J_{1,3}=1.0 and J_{3,8}=2.0), vicinal (J_{3,4}=2.5 and J_{4,5}=1.5), homoallylic(J_{4,8}=2.0) and M arrangement(J_{3,5}=1.5) couplings, and such a coupling system had been reported in the molecule of cis-vervenol⁵⁾ having the same configuration with α -pinene. Hence, it is certain that the ketone contains 3-methyl-bicyclo[3.1.1]heptan-l-one system as partial structure.

Next, the ¹³C-NMR spectrum of the ketone is compared with those of chrysanthenone and α -pinene in Table I. The carbon atoms at 4- and 10-positions were characterized as a methine and methylene groups in this ketone, while they were present as the methylene and methyl groups in chrysanthenone and α -pinene. This fact indicated that the additional isoprene unit consisting of two methylene(δ_{C} 21.5, 42.2) and one gem-dimethyl(δ_{C} 26.1, 30.4) was inserted between 4-C and 10-C in the molecule of IV. Thus, the molecular structure of the ketone should be represented by formula I.

The further supports to the structure were obtained in preparation of the derivatives, epoxide and alcohol. Vulgarone was treated with m-ClPBA in CH_2Cl_2 to give a crystalline epoxide(II),⁶⁾ $C_{15}H_{22}O_2$ (M⁺ obs. 234.1613, calc. 234.1619); mp 105.5-106.5°; [α]_D -94.2°(c 0.52, CHCl₃); v_{max}^{CC1} 3000, 1795, 1390, 1380, 1365,

Carbor	n atom	1	2	3	4	5	6	7	8
Vulgaron Chrysant	he(I) (the- (68.6(d) 67.9(d) &+20.7)	139.7(s) 138.7(s)	121.4(d) 118.4(d)	55.6(d) 33.0(t)) 65.1(d)) 62.6(d) (A&+21 7)	37.1(s) b ^{30.1(s)}	205.7(s) 205.8(s)	23.5(q) 23.0(q)
a-Pinene	e (20	47.2(d)	144.4(s)	116.1(d)	31.5(t)	40.9(d)	38.1(s)	31.3(t)	20.9(q)
Carbo	n atom	9	10	11	12	13	14	15	
Vulgaron Chrysant none (IV)	ne (I) the-	27.7(q) 27.3(q)	33.2(t) 14.7(q)	21.5(t)) 42.2(t)) 35.2(s)	26.l(q)	30.4(q)	
a-Pinene	B	26.5(q)	22.9(q)		100				<u>.</u>
a) The spectra were taken in CDCL ₃ on JECL-FACO spectrometer; Chemical shift(ôc) are given in ppm relative to TMS.									
b) $\Delta \delta = \delta c^{ketone} - \delta c^{hydrocarbon}$ in J.J. Burke and P.C. Lauterbur,									
J. Am. Chem. Soc., 86, 1876 (1964); J.B. Stothers, "Carbon-13 NMR spectroceopy" Academic Press New York 1972 P177.									
c) The assignment may be interchangeable.									
Table II, Comparison of ¹ H-NMR ^d and their aromatic solvent-induced shift ⁷⁾									
Vulgarone(I)					Chrysanthenone (IV)				
proton	cc1 ₄	C6D6	$\Delta \{ {}^{\delta CC1}_{\delta C} {}^{\sigma}_{6} {}^{\sigma}_{6}$	6 ^F 6 ^{Δ{δC}	C1 ₄ - 6 ^F 6	cci ₄ c ₆	$D_6 \Delta^{\{\delta CC\}}_{\delta C_6}$	¹ 4 ⁻ ⁰ 6 ⁻ 6 ⁻ 6 ⁻ 6 ⁻ 6 ⁻	{ ^{&CC1} 4-
1-H 3-H 4-H 5-H do	id 2.62 m 5.58 m 2.38	2.53 5.43 2.31 2.78	+0.09 2 +0.15 5 +0.07 2	.54 +0.0 .67 -0.0 .21 +0.1	08 09 m 17 07	5.30 5.	00 +0.3	0 5.34	-0.04
9-н 9-н 10-н	t 1.78 s 1.18	1.50	+0.28 1 +0.16 1	.80 -0.0 .19 -0.0	02 q 01 s s	1.70 1. 1.20 1. 1.18 0.	41 +0.2 00 +0.2 91 +0.2	9 1.73 0 1.22 7 1.28	-0.03 -0.02 -0.10
11-H 12-H 14-H	[⊥] ²⁵ ¹ ¹ ¹ ²⁵	$\begin{cases} 1; 10\\ 1.40 \\ 0.60 \end{cases}$	$\begin{cases} 1\\ 1\\ 1 \end{cases}$.30 J .70	06				
14-ле 15-Н	s 0.93 s 1.01	0.82	+0.19 1	.08 -0.0	07				
Vulgarone Chrysanthenone ⁶⁾ LAH reduction cis-Chrysanthenol(VI) ⁸⁾ epoxide(II) epoxide(V) product(III)									
proton	C	Cl ₄	ccı ₄	(cc1 ₄ c ₅	D ₅ N ^{∆{δC} 5	$D_5^{1}N$ CC	1 ₄ C ₅ D ₅ N	$\Delta \{ {}^{\circ}CC1_{5} {}^{\circ}C_{5} {}^{\circ}D_{5} {}^{N} \}$
1-н 3-н 4-н	d 2 brd 3 brd 2	.71 .01 .08	m 2.32 m 3.06 m 2.32	dd m m	1.92 2. 5.42 5. 2.08 2.	18 -0.26 51 -0.09 18 -0.10	m 5.	13 5.18	-0.05
5-н 7-н 8-н 9-н	aaa 2 s 1 s 1	.52 - .44 .18	m 2.69 - s 1.38 s 1.13	000 8 t 8	2.26 2. 3.80 4. 1.70 1. 1.50 1.	52 -0.20 19 -0.39 69 +0.01 86 -0.36	s 3. q 1. s 1.	86 4.19 63 1.61 52 1.84	-0.33 +0.02 -0.32
10-н 11-н 12-н _е	m { 1 1	,40 , 90	s 1.30	m {	$1;10 \\ 1,70 \\ 1.70 \\ 1.71$	20 80	s 0.	88 0.98	-0.10
14-не 15-не	s 1 s 0	.11 .99		S (0.96 0. 0.93 0.	96 91			

Table I, Comparison of the ¹³C-NMR^a

d) Chemical shift(δ_H) are given in ppm relative to TMS at 90 MHz. e) These assignment may be interchanged.

845 cm^{-1} , and it was reduced with LAH in abs. Et₂O to afford an cis-alcohol(III) ,⁶⁾ $C_{15}H_{24}O(M^{+} \text{ obs. 220.1819, calc. 220.1825}); mp 50.5-52.0°; [\alpha]_{D} +45.9(c 1.80, CHCl_{3}); <math>v_{max}^{CC14}$ 3520, 3350, 3020, 1645, 1040 cm⁻¹. The ¹H-NMR spectra of both derivatives and solvent shift of III, showed good correspondence toward those of chrysanthenone epoxide(V) and chrysanthenol(VI) even in 3-H and 8-H (epoxy methine) of II and 7-H(secondary hydroxyl methine) and 9-H(hydroxyl side methyl) of III as seen Table II.

Lastly, the ORD curve was taken in order to determine the absolute configuration, a strong positive cotton effect($[\phi]_{307}$ +6490, $[\phi]_{291}$ 0, $[\phi]_{273}$ -3680, a= 101.7, in isooctane) which was just as (+)-chrysanthenone(IV)([\$]311 +9000, $\left[\phi\right]_{296}$ 0, $\left[\phi\right]_{276}$ -8030, a=170.3, in isooctane)³⁾ being recognized. Accordingly, the absolute configuration of vulgarone should be represented by formula I, whose chirality is the same with that of IV with regard to the β , γ -unsaturated keto chromophore.

Biogenetically, vulgarone may be synthesized via the stereospecific cyclization of α -cis-bergamotene.

The authors wish to thank Dr. P. Teisseir for supplying the 100 MHz NMR spectra of chrysanthenone and cis-chrysanthenol. We also thank Prof. R. Tanaka, Dept. of botany, Hiroshima University, for collection and identification of the plant, and Dr. S. Imai and Miss. S. Equchi, the Dept. of Chemistry, for the NMR decoupling experiments and measurements of the high resolution mass spectra.

References

- 1) K. Forsen and M.v. Schantz, " Chemistry in botanical classification" in Novel Symposium 25 (1973), (ed. G. Bendz and J. Santesson), Academic Press, New York and London (1974), P145 and ref. therein.
- F.J. Weigert and J.D. Roberts, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 1347 (1970); J.B. Stothers, J.R. Swenson and C.T. Tan, <u>Can. J. Chem.</u>, <u>53</u>, 58 (1975).
 A. Moscowitz, K. Mislow, M.a.W. Glass and C. Jerassi, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>84</u>,
- 1945 (1962). (+)-Chrysanthenone for ORD examination was isolated from Chrysanthemum boreale, A. Matsuo, Y. Uchio, M. Nakayama and S. Hayashi, Nippon Kagaku Kaishi, 1975, 2188.
- 4) J. Meinwald and A. Lewis, J. <u>Am. Chem. Soc.</u>, <u>83</u>, 2769 (1961).
 5) M.A. Cooper, J.R. Salmon, D. Wittaker and U. Sheidegger, <u>J. Chem. Soc.</u> (<u>B</u>), 1259 (1967).
- 6) Epoxidation and reduction of the ketone commonly gave rise to an only cisisomer with regard to the carbonyl and C-9 methyl group. This was the same case in the epoxidation and reduction of chrysanthenone in S.J. Torrance and C. Steerlink, J. Org. Chem., 39, 1068 (1974); P. Teisseir, P. Rouillier and A. Galfre, <u>Recherches(Paris)</u>, 16, 68 (1967).
 7) I. Horibe, H. Shigemoto and K. Tori, <u>Tetrahedron Lett</u>., <u>1975</u>, 2849 and ref.
- therein.
- 8) P.V. Demarco, E. Farkas, D. Doddrell, B.I. Mylari and E. Wenkert, J. Am. Chem. Soc., 90, 5480 (1968).